Abstract:
The ability to control and manipulate free electrons is interesting for its fundamental aspects, while its development for imaging applications has seen great progress, enabling imaging at atomic resolutions. Recent developments in quantum information and quantum metrology have inspired a growing interest in developing techniques to control the quantum properties of free electrons, as well as attain the quantum limits for imaging applications. In this talk, I will describe a technique to control the quantum statistics of free electrons using ultrafast lasers, demonstrating a measurement of electron antibunching resulting from Heisenberg’s uncertainty and Pauli’s exclusion principles. I will then discuss progress towards realizing a quantum-inspired technique to enhance the dose efficiency of electron microscopes for imaging of single molecules with atomic resolution, as well as the quantum limits to phase contrast electron microscopy.