Special Condensed-Matter Seminar: "A new form of ergodicity breaking from quantum many-body scars"

Date: 
Sun, 27/01/201914:00-15:30
Location: 
Danciger B Building, Seminar room

Lecturer: Maksym Serbyn
Abstract:
The statistical mechanics description of many-particle systems rests on the assumption of ergodicity, the ability of a system to explore all allowed configurations in the phase space. For quantum many-body systems statistical mechanics predicts the equilibration of highly excited non-equilibrium state towards a featureless thermal state. Hence, it is highly desirable to explore possible ways to avoid ergodicity in quantum systems. Many-body localization presents one generic mechanism for a strong violation of ergodicity relying on the presence of quenched disorder. In my talk I will discuss a different mechanism of the weak ergodicity breaking relevant for the experimentally realized Rydberg-atom quantum simulator[1]. This mechanism arises from the presence of special eigenstates in the many-body spectrum that are reminiscent of quantum scars in chaotic non-interacting systems[2]. In the single-particle case, quantum scars correspond to wave functions concentrated in the vicinity of unstable periodic classical trajectories. I will demonstrate that many-body scars appear in the Fibonacci chain, a model with a constrained local Hilbert space which can be realized by a Rydberg chain. The quantum scarred eigenstates are embedded throughout the otherwise thermalizing many-body spectrum but lead to direct experimental signatures, as I show for periodic recurrences that reproduce those observed in the experiment[1]. Finally, I will construct the weak deformation of the Rydberg chain Hamiltonian that makes revivals virtually perfect [3]. I will conclude with discussing a new opportunities for the creation of novel states with long-lived coherence in systems that are now experimentally realizable and possible generalizations of these results.
[1] Bernien, H. et al., Nature 551, 579–584 (2017), arXiv:1707.04344
[2] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić, Nature Physics (May 2018), arXiv:1711.03528 and Phys. Rev. B 98, 155134 (2018) arXiv:1806.10933
[3] S. Choi, C. J. Turner, et al. arXiv:1812.05561