Date:
Mon, 01/01/202412:00-13:30
Location:
Levin building, Lecture Hall No. 8
Lecturer:
Yonathan Anahory, The Racah Institute of Physics
Abstract:
Magnetism emerges from the electronic interactions between the neighboring atoms. In confined samples, the
proportion of atoms near the surface is larger. Surface atoms have fewer neighbors and, thus, are expected to exhibit
weaker magnetic correlations than the ones inside a bulk sample. In this work, we employ a state-of-the-art magnetic
nanoimaging technique [1,2] , which unveils a material where we observe the opposite effect. In relatively thick samples,
we observe that only the edge of the sample remains magnetized at zero applied field [3] . We show that two nearby edges
stabilize the magnetism in the region between the edges, resulting in a quasi-1D magnetic structure [4] . Such proximity
effect is observed down to the zero-dimension limit (nanoisland). In such a limit, we can create an array of magnetic
nanoparticles that show significant inter-island interactions. In the future, such a nanoparticle array could be employed
as a simulator for many interacting particles.
[1] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L.
Rappaport, M. E. Huber, E. Zeldov, Nat. Nanotechnol. 2013, 8, 639.
[2] Y. Anahory, H. R. Naren, E. O. Lachman, S. Buhbut Sinai, A. Uri, L. Embon, E. Yaakobi, Y. Myasoedov, M. E. Huber,
R. Klajn, E. Zeldov, Nanoscale 2020, 12, 3174.
[3] A. Noah, H. Alpern, S. Singh, A. Gutfreund, G. Zisman, T. D. Feld, A. Vakahi, S. Remennik, Y. Paltiel, M. E. Huber, V.
Barrena, H. Suderow, H. Steinberg, O. Millo, Y. Anahory, Nano Lett. 2022, 22, 3165.
[4] A. Noah, Y. Zur, N. Fridman, S. Singh, A. Gutfreund, E. Herrera, A. Vakahi, S. Remennik, M. E. Huber, S. Gazit, H.
Suderow, H. Steinberg, O. Millo, Y. Anahory, ACS Appl. Nano Mater. 2023, 6, 8627.
Magnetism emerges from the electronic interactions between the neighboring atoms. In confined samples, the
proportion of atoms near the surface is larger. Surface atoms have fewer neighbors and, thus, are expected to exhibit
weaker magnetic correlations than the ones inside a bulk sample. In this work, we employ a state-of-the-art magnetic
nanoimaging technique [1,2] , which unveils a material where we observe the opposite effect. In relatively thick samples,
we observe that only the edge of the sample remains magnetized at zero applied field [3] . We show that two nearby edges
stabilize the magnetism in the region between the edges, resulting in a quasi-1D magnetic structure [4] . Such proximity
effect is observed down to the zero-dimension limit (nanoisland). In such a limit, we can create an array of magnetic
nanoparticles that show significant inter-island interactions. In the future, such a nanoparticle array could be employed
as a simulator for many interacting particles.
[1] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L.
Rappaport, M. E. Huber, E. Zeldov, Nat. Nanotechnol. 2013, 8, 639.
[2] Y. Anahory, H. R. Naren, E. O. Lachman, S. Buhbut Sinai, A. Uri, L. Embon, E. Yaakobi, Y. Myasoedov, M. E. Huber,
R. Klajn, E. Zeldov, Nanoscale 2020, 12, 3174.
[3] A. Noah, H. Alpern, S. Singh, A. Gutfreund, G. Zisman, T. D. Feld, A. Vakahi, S. Remennik, Y. Paltiel, M. E. Huber, V.
Barrena, H. Suderow, H. Steinberg, O. Millo, Y. Anahory, Nano Lett. 2022, 22, 3165.
[4] A. Noah, Y. Zur, N. Fridman, S. Singh, A. Gutfreund, E. Herrera, A. Vakahi, S. Remennik, M. E. Huber, S. Gazit, H.
Suderow, H. Steinberg, O. Millo, Y. Anahory, ACS Appl. Nano Mater. 2023, 6, 8627.