

Gravitational Wave Observations: LIGO Introduction for students & researchers

Ofek Birnholtz

on behalf of LIGO & VIRGO Collaborations

Ben-Gurion University, Be'er-Sheva, Israel 19 April 2017

LVC References

- [1] GW150914 Detection, arXiv:1602.03837
- [2] CBC Searches, arXiv:1602.03839
- [3] Parameter Estimation (PE), arXiv:1602.03840,
- arXiv:1606.01210
- [4] Testing GR, arXiv:1602.03841
- [5] Detector Characterization (DetChar),
- arXiv:1602.03844
- [6] Basic Physics, arXiv:1608.01940
- [7] GW151226, arXiv:1606.04855
- [8] O1 BBH, arXiv:1606.04856
- [9] Numerical Rel., arxiv:1606.01262

$$GM = \omega^2 r^3$$

$$F = -\frac{Gm_1m_2}{r^2}$$

$$F = -\frac{Gm_1m_2}{r^2} \longrightarrow F = \frac{kq_1q_2}{r^2}$$

$$F = -\frac{Gm_1m_2}{r^2} -$$

$$\longrightarrow F = \frac{kq_1q_2}{r^2}$$

$$\nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \cdot \overrightarrow{E} = 4\pi\rho$$

$$\nabla \times \overrightarrow{E} + \frac{1}{c} \frac{\delta \overrightarrow{B}}{\delta t} = 0$$

$$\nabla \times \overrightarrow{B} - \frac{1}{c} \frac{\delta \overrightarrow{E}}{\delta t} = \frac{4\pi}{c} \overrightarrow{J}$$

$$F = -\frac{Gm_1m_2}{r^2} \longrightarrow$$

$$F = \frac{kq_1q_2}{r^2}$$

$$\nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \cdot \overrightarrow{E} = 4\pi\rho$$

$$\nabla \times \overrightarrow{E} + \frac{1}{c} \frac{\delta \overrightarrow{B}}{\delta t} = 0$$

$$\nabla \times \overrightarrow{B} - \frac{1}{c} \frac{\delta \overrightarrow{E}}{\delta t} = \frac{4\pi}{c} \overrightarrow{J}$$

$$\Box A^{\mu} = j^{\mu}$$

$$F = -\frac{Gm_1m_2}{r^2} \longrightarrow$$

$$\nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \cdot \overrightarrow{E} = 4\pi\rho$$

$$\nabla \times \overrightarrow{E} + \frac{1}{c} \frac{\delta \overrightarrow{B}}{\delta t} = 0$$

$$\nabla \times \overrightarrow{B} - \frac{1}{c} \frac{\delta \overrightarrow{E}}{\delta t} = \frac{4\pi}{c} \overrightarrow{J}$$

$$\Box A^{\mu} = j^{\mu}$$

$$F = -\frac{Gm_1m_2}{r^2} \longrightarrow$$

$$\downarrow$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \cdot \vec{E} = 4\pi\rho$$

$$\nabla \times \vec{E} + \frac{1}{c} \frac{\delta \vec{B}}{\delta t} = 0$$

$$\nabla \times \vec{B} - \frac{1}{c} \frac{\delta \vec{E}}{\delta t} = \frac{4\pi}{c} \vec{J}$$

$$R_{\mu\nu} - \frac{1}{2}R\,g_{\mu\nu} = T_{\mu\nu} \longleftarrow$$

$$\Box A^{\mu} = j^{\mu}$$

$$F = -\frac{Gm_1m_2}{r^2} \longrightarrow$$

$$\nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \cdot \overrightarrow{E} = 4\pi\rho$$

$$\nabla \times \overrightarrow{E} + \frac{1}{c} \frac{\delta \overrightarrow{B}}{\delta t} = 0$$

$$\nabla \times \overrightarrow{B} - \frac{1}{c} \frac{\delta \overrightarrow{E}}{\delta t} = \frac{4\pi}{c} \overrightarrow{J}$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = T_{\mu\nu} \longleftarrow$$

$$\Box \bar{h}^{\alpha\beta} = -16\pi T^{\alpha\beta}$$

$$\Box A^{\mu} = j^{\mu}$$

What do they do?

Two Polarizations: +, x

(transverse-traceless gauge)

Images: Barry Barish

 $h \sim \delta L/L$

What do they do?

Images: Barry Barish

What is LIGO?

- 2 active Advanced detectors:
 - H1 at Hanford, WA, USA
 - L1 at Livingstone, LA, USA
- 2 more detectors:
 - VIRGO at Cascina, Italy
 - under commissioning
 - GEO600 at Hanover, Niedersachsen, Germany
 - active at lower sensitivity, equipment R&D
- LIGO Scientific & VIRGO Collaborations:
 - > 1000 scientists, > 130 institutions, 18 countries
 - Always open for more!

Status

- O1 Sep 2015 Feb 2016
 - ~3 Binary Black Hole (BBH) Detections
 - Burst connections examined
 - Longer signals still analyzed
- O2 from Nov 2016
 - Alerts issued to Astro partners
 - Currently running!
 - Waiting for VIRGO to join

Modelled CBC Searches

What we search for

How we do it

What we do when we find it

What a signal looks like

• The post-Newtonian parameter x : $\sqrt{x} = v/c = \omega r/c = \sqrt[3]{\pi GM f_{GW}}/c$

• For
$$x\sim 0.1$$
 : $\frac{M}{20\,{
m M}_\odot}\sim \frac{100\,{
m Hz}}{f_{GW}}$

•
$$M = m_1 + m_2$$
 $\left(\frac{G \,\mathrm{M}_\odot}{c^3} \sim 5\mu s\right)$

What a signal *really* looks like

The window

• The Quadrupole Formula: $h_{ij} = \frac{2 G}{c^4 d_L} \frac{\mathrm{d}^2 Q_{ij}}{\mathrm{d}t^2}$

$$\frac{dE_{GW}}{dt} = \frac{c^3}{16\pi G} \iint |\dot{h}|^2 dS = \frac{1}{5} \frac{G}{c^5} \sum_{i,j=1}^3 \frac{d^3 Q_{ij}}{dt^3} \frac{d^3 Q_{ij}}{dt^3}$$

Defining the chirp mass:

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

Frequency evolution:

$$\dot{f} = \frac{96}{5} \pi^{8/3} \left(\frac{G \mathcal{M}}{c^3} \right)^{5/3} f^{11/3}$$

Time in the band:

$$\tau_0 = \frac{5}{256} \left(\pi f_{ref} \right)^{-8/3} \left(\frac{G\mathcal{M}}{c^3} \right)^{-5/3}$$

GW150914: BBH Merger

$$\dot{f} = \frac{96}{5} \pi^{8/3} \left(\frac{G \mathcal{M}}{c^3} \right)^{5/3} f^{11/3}$$

$$f^{-8/3}(t) = -\frac{(8\pi)^{8/3}}{5} \left(\frac{GM_c}{c^3}\right)^{5/3} (t - t_0)$$

$$M = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \cong 30 \,\mathrm{M}_{\odot}$$

GW150914: BBH Merger

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \cong 30 \,\mathrm{M}_{\odot}$$

- The Simplest case:
 - Equal masses $m_1=m_2=35\,\mathrm{M}_\odot$, $M=m_1+m_2=70\,\mathrm{M}_\odot$
 - Circular orbit $\omega_{\mathrm{Kepler-max}} = 2\pi f_{\mathrm{GW-max}}/2 = 2\pi \times 75 \; \mathrm{Hz}$

From Kepler's Law: effective separation
$$R = \left[\frac{GM}{\omega_{\mathrm{Kepler-max}}^2}\right]^{1/3} = 350 \ \mathrm{km}$$

• No Spin: $r_{\text{Schwarz}}(M) = \frac{2GM}{c^2} = 200 \text{km}$

compactness ratio $\mathcal{R} = 350 \text{km}/200 \text{km} \sim 1.75$

Compact + Heavy => Black Holes

Matched Filtering

Measure the Noise Power Spectrum Density (PSD)

$$S_n(f)$$

Define Scalar product

$$\langle a|b\rangle = 4 \int_0^\infty \frac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)}df$$

• Signal-to-(Gaussian)Noise Ratio (SNR) of template h in measured strain s

$$\rho = \frac{|\langle h|s\rangle|}{\sqrt{\langle h|h\rangle}}$$

• Find *Triggers*, which maximize $\rho(t)$

Courtesy of A. H. Nitz

The Template "Über"-bank

- 4 free parameters:

 - $m_{1,2}$ Masses
 $\chi_{1,2} = \frac{c\,\mathbf{S}_{1,2}\cdot\hat{\mathbf{L}}}{G\,m_{1,2}^2}$ aligned spins \mathbf{S}_{10^1}
- 2 waveform models:
 - TaylorF2 $M < 4 \mathrm{M}_{\odot}$
 - SEOBNRv2 $M > 4 M_{\odot}$
- 2 population methods:
 - Geometric $\mathcal{M} < 1.5 \mathrm{M}_{\odot}$
 - Stochastic $\mathcal{M} > 1.5 \mathrm{M}_{\odot}$

- Mismatch >3% for <1% of signals (ER8 PSD)
- ~250,000 templates

Precession

- Überbank effectual if only little precession
- Generally, precession adds ~10 spin+sky free parameters

Aligned search precession in post-analysis

Parameter Estimation (PE)

- Follow-up on Events
- "Opposite" problem to Searches:
 - maximum resolution, few triggers
- Stochastic Sampling Engines:
 - Markov Chain Monte-Carlo
 - Nested Sampling
- Priors from identified trigger (time)

PE – sample results

- Sky Location
- More waveform approximants:
 - IMRPhenomD
 - Precession: IMRPhenomP, SEOBNRv3
 - Little precession / small mass ratio
 - Effective spin
- Modified waveforms:
 - Eccentricity
 - Matter effects, NS E.O.S
 - Modifications to GR

Testing GR Consistency

Testing GR: post-Newtonian

- "Early" part
- J0737-3039:

 $M \sim M_{sun}$

 $v \sim 10^{-3}c$

 $dP/dt \sim 10^{-12}$

• GW150914:

 $M \sim 60 M_{sun}$

 $v \sim 0.5c$

dP/dt ~ 1

PN order	Includes (amongst other things)
0PN	Kepler Newtonian Gravity
0.5PN	Zero in GR
1PN	Pericenter advance (cf zero) PPN parameters γ, β, ξ
1.5PN	Spin-orbit couplings Gravitational tails (backscatter)
2PN	Spin-spin couplings (Newtonian) quadrupole-monopole (GR BH) (Newtonian) magnetic dipole-dipole (cf zero)
3PN	Tails of tails
5PN	(Newtonian) Adiabatic tidal deformations

Courtesy of A. B. Nielsen

Testing GR - PN Modifications

Testing GR - graviton mass?

$$\lambda_q > 10^{13} \text{km}$$

$$m_g < 1.2 \cdot 10^{-22} \text{eV}/c^2$$

Testing GR: Ringdown

- "Late" part
- "No Hair Theorem": Determined by by mass & spin Perturbations "ringdown" at f_{mn}(M,a)

[8]

IMR (l = 2, m = 2, n = 0)

Testing GR: Ringdown

- Compare higher modes for "No Hair Theorem"
- Test Area Theorem
 - Allow for templates of alternative theories
- Test features beyond the Light Ring:
 - "Black Hole Mimickers":
 - gravastars, boson stars, hydro models, strings
 - Test "Echoes"

Numerical Relativity

Before 2005: Kip Thorne's sketch

- Spins: $\chi_{1,2} = S_{1,2}/m_{1,2}^2 \lesssim 0.6$
- Number of orbits $N \lesssim 15$

	SXS	Gra	vita	tio	nal	Wa	vef	orm	Da	atab	oase	Э	
Completed Simulations													
Id	Data 💥	m ₁ /m ₂ ×	X1 💥	X2 💥	X1X 💥	X1Y X	X1Z 💥	X ₂ X ×	X2Y X	X2Z 💥	Ecc 💥	Mω _{orb} 💥	Orbits 💢
SXS:BBH:0001	Metadata	1.0000	0	0	0	0	0	0	0	0	2.57e-4	0.01228	28.12
SXS:BBH:0002	Metadata	1.0000	0	0	0	0	0	0	0	0	1.75e-4	0.01134	32.42
SXS:BBH:0003	Metadata	1.0004	0.4994	0	0.4966	0.0527	-0.0003	0	0	0	2.87e-4	0.01132	32.34
SXS:BBH:0004	Metadata DATA	1.0005	0.4995	0	0	0	-0.4995	0	0	0	3.80e-4	0.01151	30.19
SXS:BBH:0005	Metadata	1.0005	0.4995	0	0	0	0.4995	0	0	0	2.36e-4	0.01227	30.19
SXS:BBH:0006	Metadata	1.3451	0.3202	0.1504	0.2340	0.1477	-0.1611	0.0911	0.0640	-0.1010	2.49e-4	0.01452	20.08
SXS:BBH:0007	Metadata	1.5000	0	0	0	0	0	0	0	0	4.34e-4	0.01229	29.09

What next?

- New Compact Binary Coalescence sources:
 - Neutron Stars
 - BH-NS
- Matter effects:
 - Tides, Disruptions
 - E/M Fields
- New waveforms:
 - Precession (especially transitional precession)
 - GR modifications
 - Different remnants

2nd Observation Run (O2): Now running!

What next?

- 3rd detector VIRGO
- => source localization
- => multi-messenger hunt
- => signal coherence

Wider detector network:

Image: Barry Barish

What next?

- Louder SNR => Higher modes
- Populations & Statistics => evolution models
- Other Sources:
 - Stochastic Background
 - Bursts:
 - Pulsar Glitches
 - Supernovae
 - Continuous Waves: Deformed Neutron Stars
- With new data come new surprises:
 - New noise analyses, new reduction techniques
 - New tests constrain theory => new theories...

Opportunities

- LIGO Open Science Center (LOSC)
 - Data Release with every detection publication
 - Codes & tutorials online
 - Full data release at ~2yr latency
- LIGO Algorithm Library code (LAL): open-source
- Einstein@home crowd-sourced search
- Internships at LIGO sites and at AEI
- 73rd Scottish Universities Summer School http://www.supa.ac.uk/research/sussp73.php
- Online course (Sonoma State):
 Testing General Relativity with LIGO

http://www.ssuexed.com/course.php?id=2839&sem=2&year=2017