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/%&)UC-HIPACC's

%‘H International Summer School
IPAC(‘ on AstroComputing presents:

STAR & PLANET

July 22 - August 9, 2013

University of California, Santa Cruz
visit us on the web: hipacc.ucsc.edu/ISSAC2013.html

Description: Star and planet formation are central drivers in
cosmic evolution: they control generation of radiation, syn-
thesis of heavy elements, and development of potential
sites for life. Because star and planet formation involve nu-
merous physical processes operating over orders of magni-
tude in length and fime scale, simulations have become es-
sential to progress in the field. The objective of the 2013 UC-
HIPACC AstroComputing Summer School is to train the next
generation of researchers in the use of large-scale simula-
tions in star and planet formation problems. The school will
cover many of the major public codes in use today, includ-
ing tutorials and hands-on experience running and analyz-
ing simulations. Students will receive accounts on the new
3,000-core supercomputer Hyades on the UCSC campus for
the duration of the school.

The school is directed by Prof. Mark Krumholz (UCSC), and is
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Volume rendering of the gas density in a simulation of
the formation of a 70 Solar mass binary system. Krumholz

funded primarily by UC-HIPACC (Profv.dJoeI Pri-

mack, UCSC, director). Additional funds are being sought from NSF for student support and from DOE for infra-

structure support. Students will be housed on the UCSC cam

pus (approximately $50/night). UC-HIPACC will

cover lodging at UCSC for all accepted students and also travel for UC-affiliated students. Some financial as-

sistance for travel may be available for other students.
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Students must apply by filling in the online form at http://hipacc.ucsc. edu/ISSAC2013 Appllccflon php

mmom m\

Applications are due March 16, 2013, although it may be possible to consider late opplicoﬁonsl We aim to tell
students who apply on time whether they are admitted by April 2, 2013. Upon acceptance all students who '

plan to attend will pay a registration fee of $500. Week day
a special excursion will be provided for o’r’rendees

Director: Mark Krumholz (UCSC)

Speakers and Topics will include:

Main lecturers

(5 lectures each and lead afternoon workshops’f moomexNeal Evans
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Robi Banerjee (U. Hamburg, FLASH)
Paul Clark (U. Heidelberg, GADGET / SEREN) -
Patrick Hennebelle (CEA/Saclay, RAMSES)
Stella Offner (Yale, RADMC / HYPERION / CASA)
Tom Quinn (U. Washington, GASOLINE / CHANGA)
Jim Stone (Princeton, ATHENA)

0101001

0111010

1010101010010101
710101001011

Tom ‘Abel (S’rcnford first sfcrs ENZO

‘Kaitlin Kratter (U. Colorado, bmcry formation)
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Star Formation and Feedback
1l: The Physics of

Stellar Feedback

Mark Krumholz, UC Santa Cruz




Outline

Why feedback?
Energy versus momentum-limited feedback
Feedback budgets

Feedback taxonomy
— Photoionization




Why Feedback?
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Star Formation Too Fast

10.0000

Bate 2009
Krumholz & Tan 2007 (updated)

Evans+ 2009

Heiderman+ 2010

Lada, Lombardi, & Alves 2010
Schenck+ 2011

Open = single object

Filled = galaxy mean
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Data compilation from Krumholz, Dekel, & McKee (2012); KTo7 updated with HCN effective
density from Schenck+ (2011) , new Orion data from Regianni + (2011), da Rio+ (2012)




Star Formation Too Efficient

* Without feedback,

bound clouds =»
bound clusters

. 100
* Most GMC mass é
bound; proto- > -0 a™=0.46+0.07
clusters (n > 104
cm3) bound
* Why don’t most Virial parameter o

stars form in Virial ratio distribution of GMCs (Roman-Duval+ 2010)

bound clusters?



Galaxy Formation Too Efficient
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The Solution...

RECT SALES

u
r We1568 14295 ””I”

51



Energy-Conserving Feedback

Hot material in
shell interior,
mass M, ,

temperature T

Stellar source,
energy injection rate
dE/dt




Momentum-Conserving Feedback

Energy removed by
radiation or escape
of hot gas

Stellar source,
momentum
injection rate dp/dt




What's the Difference?

Consider a source w/mass flux dM/dt, velocity

v; after time t, shell has mass M, radius r

- . .2 ro2
Energy-conserving case: M g1y, ~ Mo“t
Momentum-conserving case: M7, ~ Muwt

Ratio of energies, momenta at equal times:

MgiZ v

©2
Mprp o

DEﬁne ftrap —

~— > 1

M

Mgr | M
M,r, Mt

Mvt

11 l.e. p/psource -1



Feedback Budgets

Let IMF be &(m) = dn/dInm, [&dm =1
Mean star massis m = 1/ [ {dInm

Consider a quantity Q, production rate g(m, t)
known from stellar evolution

For stellar population of age t, production rate
isq(t) =M | &g(m,t)dIlnm

Total amount of quantity produced over all
timeis Q =M [ £ [ g(m,t)dtdlnm



Feedback Budgets

* From these results, define IMF-averaged
production rate, yield by

<%>t = /gq(m,t)dlnm

=) = m.t)dtdlnm




Feedback: What is Needed

Consider an object with escape speed v,

Momentum injection rate required to drive
galactic wind with (dM/dt),;.q ~ (dM,/dt) is

(L) e

NB: this is a lower limit, assuming no losses

SFE <~ 0.5 in galaxies with v,.. > 200 km s7* =»
sum of feedbacks >> 200 km s7* on galactic
scales



Feedback Taxonomy
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lonizing Radiation

* lonizing photons heat ISM
to ~104K (c, ~10 km s™?)

* Can'tlaunch galactic
winds, but can requlate SF

* Similar to momentum-
conserving case, since gas
temp fixed




lonizing Radiation: Disruption

Time: 5.37 Myr, 2.20 tg

V... =10 km/s H” regions
disrupt
clouds with

Vesc <~ few

—30 —20 —10 20 30 —20 —10 0O 30 30 —20 —10 0 10 20 30 krrlls bUt
x (pc) I

x (pc) x (pc)

I

107° 107 1:'“ o 1072 107! n Ot |a rg e r
ime: 2.00 Myr, 2.58 t O n e S (Krumho|z+

2006, 2009, Murray+
2010, Fall+2010,
Goldbaum+ 2011)

Dale+ (2012); What's
included: hydro,

x (b0) gravity, ionizing
DTSN radiation

. _a
log ¥ (g em™=)




lonizing Radiation: SF Regulation

* Hllregions keep
10]
€« SFE low
|U)
2B (Gritschneder+ 2009,
N Vazquez-Semadeni+ 2010,
= 10
: Peters+ 2010, 2011,
0" Goldbaum+ 2011)
07

 After accretion

Above: Vazquez- ends’ may
Semadeni+ 2010; "

5 10 included: hydro, dISFUpt ClOUdS

§ gravity, approx.

ionization * Probably the

27 Left: semi-analytic dominant SF
GMC models,

10107107210 1 10 10* 10° 10* Coldbluiges reg U | ato r tOd ay

|gH H/gaccl



Radiation Pressure

* For a Kroupa IMF, instantaneous (zero-age)
and total radiation production are (from sbgg)

L
<M> — 1140 L@ M®_1 — 2200 erg g_l

Ly, _ _
< d> — 1.1 x 10°! erg M5! = 6.2 x 10742

M




When is RP Important?

Momentum budget ~ 200 km s™* =» cannot

launch winds in large galaxies unless f,,, >>1

Can be important for early dwarfs and sub-
galactic objects with v, . << 200 km s~ even if

ftrap ~ 1 (Krumholz & Matzner 2009; Wise+ 2012)

RP significant if (ft L/c) te>Mv

manipulation, this glves (Fall+ 2010)
2. < ftrap 1 g CIN

Key question: whatis f, _ 7

- with some

VII’I

=7

rap-



Effects of ,

0.0 Gyr Gas |f ftra

2011, Hopklns+ 20123,b,c,d)

* RP disrupts all
clusters, launches
galactic winds

rap

TlR . (Murray+ 2010,

£ f

trap ~1... (Krumholz &




Observations of f,

log P (dyn cm'z)

—-69d00°00"'

02°00"

04°00"g
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05h39m30s 39m00s 38m30s 38m00s 37m30s

Pressures of direct starlight, reprocessed IR, warm gas, hot gas in 30 Dor (Lopez+ 2011)



Numerical Measurement of f,

TO3F0.50 T10F0.25 T10F0.50

rap




Numerical Results

* If radiation force <
gravity at dust
photosphere, no wind

* If radiation force >
gravity at dust
photosphere wind, but
with f

trap ~
_._—- . Conclu5|on. RP may

affect sub-galactic
objects, but cannot
produce galactic winds

19576050005 1.01.52.0
lOg fE,*

Krumholz & Thompson (2013)




Stellar Winds

* For a Kroupa IMF, instantaneous (zero-age)
and total wind production are (from sbgg)

Lwin _ _
< Md> —2.0Lo M =38 erg g™?

EWin — _
< d> — 2.3 x10% erg M5! = 1.3 x 1076¢2

M




Winds vs. Radiation

* Stellar winds add ~(25%, 50%) to (zero-age,
total) radiation momentum output - due to

Wi nd'luminOSity relation (Kudritzi+ 1999, Repolust+ 2004)

* Implication: winds just add a little to radiation

unless f

trap,wind >2 ft

rap,rad



Observational Diagnosis

|
o
th

‘D
|
g 30 Dor, Lopez
) + (2011)
=5
a0
=

* Can estimate pressure of shocked stellar wind gas
via x-ray observations

* If shocked gas is trapped, Py >> P, (Castor+ 1975)
* Observed L, implies wind is not trapped: P, << P,

(Harper-Clark & Murray 2009; Lopez+ 2011; Yeh & Matzner 2012)



Supernovae

* To compute budget, let q(m,t) = E_ &(t-t,(m)),
E_ =105 erg, for all stars above mass m

mII"I

E o0 N
<—]\54N>:E0/mmn§dlnm E0< ]\ZN>

e Result:




Supernovae vs. Winds, Radiation

Compared to radiation, SN have ~100 x less
energy, ~6 x less momentum

Compared to winds, SN have ~5 x more
energy, ~2 x less momentum

So why are SN potentially so important?

Answer: because while radiation, winds are
close to momentum-conserving, SNe are
much closer to energy-conserving!



Why Are SNe Energy-Conserving?
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Temperature (K

Radiative cooling rate for solar metallicity gas (lower
curve) in collisional ionization equilibrium (Dere+ 2009)

Post-shock temp.
for SN ejecta
moving at 104 km
stis ~10° K
Coolingtime t_,
~nkT [ An2 ~ 60
Myr (n/fcm™3)™2
Time to escape
galaxy t_.. at 104
km st is << 1 Myr
t., o >> t. initial
expansion is
adiabatic



Sedov-Taylor Expansion

* During energy-conserving phase, SN blast
follows Sedov-Taylor (ST) similarity solution

1/5
R(t) = 1.2 (fot?) T,(t) = “?B;)

r=g P =pfl@) T =Tjk)

L. . db ST
* Radiationrateis - = | AmAntdr
. Energy conserving-phase ends when at time
t.., defined by / rad (|
0

(NB: see Thornton et al. 1998 for E dt’ ~ Eq
much more accurate calculation)



Momentum Budget

* Initial momentum p; = 2E, /v, = 104 Mg km s
° At tradl Prad — (47T/3)100R§R3 t
* Numerical evaluation:

rad

trad = 49E§122 o kyr

Rs(traqd) = 24E(5)129n5 042 he




Implications

* SN can dominate momentum budgetif n,is
small enough =» other feedbacks critical

Hard to simulate: must include FB that lowers
n, before SN, and resolve ST phase

Below: two simulations w/strong, weak SNe (Dobbs+ 2011)




“"Metallicity Feedback”

FUV+24um

- Bigiel+ 2008 ] sl k;
e T s s Bolatto+ 2011
~1.0-05 00 05 10 15 20 25

log Ty [Me pc™] 10g [Sgas (Mopc2)]

1 1 1 1 1 1 1 1
12 14 16 1.8 2 22 24 26

* Metallicity changes SF law, and stars produce metals
» Effect non-negligible in dwarfs and in early universe,
because tee >t




SF Laws in High-z Galaxies

low: (Z/Z ) =0.055
medium : <Z/Z®> =0.17
high: (Z/Z ) =0.32

Total gas
Atomic gas
- --- Molecular gas

1 10 102
ZuNTR ZHD 21—12 (My/pc?)
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]
]
]
A
1

0

Gnedin & Kravtsov 2010 Kuhlen+ 2012




Metallicity-Reqgulated SF

Mpy =150 x10" M, M,, =243 x10° M, M, =1.16 x10° M,

Metallicity-dependent SF Metallicity-independent SF

Same halo (~10%° Mg, z~5) in two simulations with different SF
recipes (Kuhlen+ 2012)



Mass Function and SF at High z
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Krumholz & Dekel 2012

Kuhlen+ 2012

— SFR, fiducial

Inflow
Observed




Not Quite So Simple

Lookback time (Gyr)
0123456 7 8 9 10 1 12

REF
SFTHRESZ — — — —

Stellar Mass [Me]

Christensen+ 2012

Metals, no H, — - — —

Metals, H,

2
Redshift Time [Gyr]

Why different than Kuhlen+, Krumholz & Dekel?
Probably feedback.



Implications

* Metallicity-dependent star formation makes
no difference in MW-sized galaxies, but

makes a large difference at SMC scales

* Metal ejection, IGM mixing, re-accretion
make a big difference; this needs numerical

work



