Star Formation and Feedback II: The IMF and the SFR

Mark Krumholz, UC Santa Cruz

30th Jerusalem Winter School on Theoretical Physics

January 1, 2013

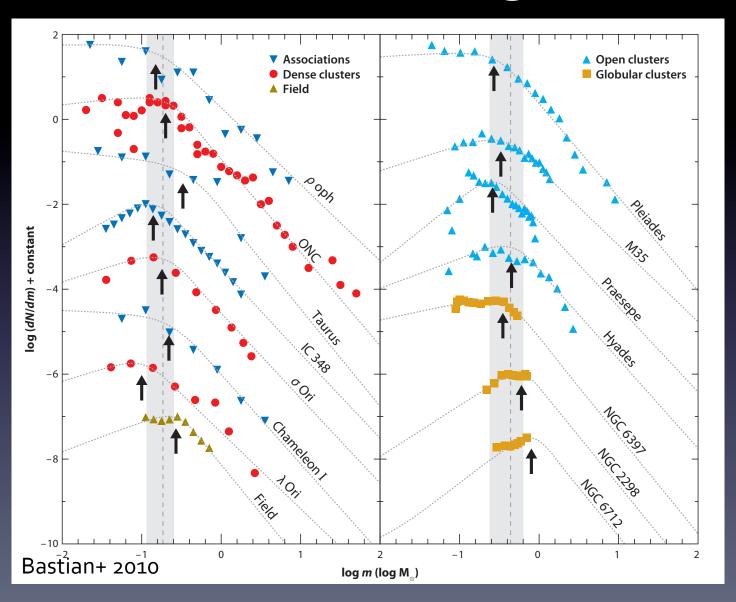
Outline

- The IMF
 - Observations
 - Theoretical approaches
 - The peak and the isothermal conundrum
 - The tail
- The SFR
 - Observations
 - Theoretical approaches
 - The top-down approach
 - The bottom-up approach

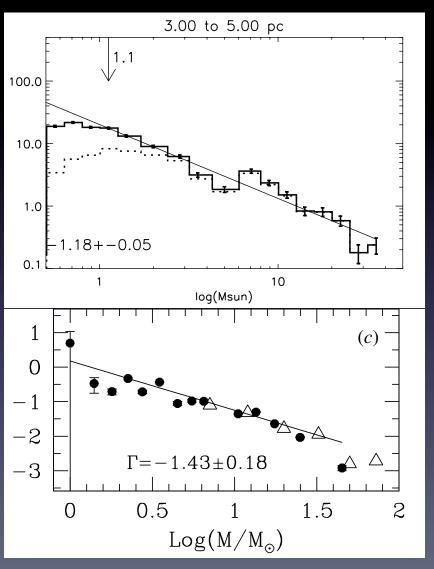
Why the IMF Matters

- Nearly all extragalactic measurements (e.g. masses, SFRs) implicitly assume an IMF
- IMF determines strength of stellar feedback
- IMF determines element production

IMFs in MW Regions



IMFs in Magellanic Clouds

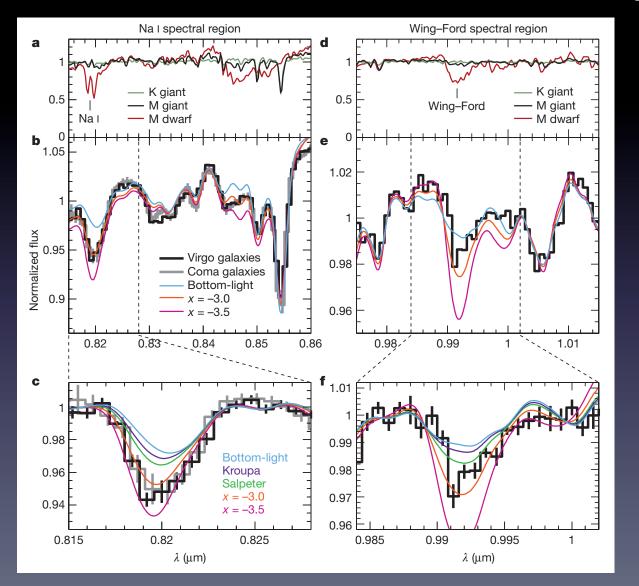


dn / d ln m + const

IMF in the 30
Doradus region, a starburst cluster in the LMC
(Andersen+ 2009)

IMF in NGC 346 in the SMC, at 1/5 Solar metallicity (Sabbi+ 2008)

Variation (?) in Giant Ellipticals



Spectra of nearby ellipticals in the vicinity of dwarf-sensitive features

van Dokkum & Conroy (2010)

Properties of the IMF

- MW IMF shows a peak at 0.1 1 M_☉, plus a powerlaw w/slope ~ –2.3 at higher masses
- LMC / SMC data indicate no variation with density, metallicity, dwarf vs. spiral
- Evidence for a bottom-heavy IMF in giant ellipticals, but only from integrated light – suggestive, but not absolutely certain

The Peak: the Usual Story

Gas clouds fragment due to Jeans instability

$$M_J \approx \sqrt{\frac{c_s^3}{G^3 \rho}}$$

$$\approx 034 M_{\odot} \left(\left(\frac{T}{110 \text{K}} \right)^{33/22} \left(\left(\frac{m}{110^5 \text{cm}^{-33}} \right)^{-11/22} \right)^{-11/22}$$

Problem: GMCs have T ~ constant, but no varies a lot

Isothermal Gas is Scale Free

$$\mathcal{M} = \frac{\sigma}{c_s} \propto \sigma$$

$$\beta = \frac{8\pi\rho c_s^2}{B^2} \propto \rho B^{-2}$$

$$n_J = \frac{\rho L^3}{c_s^3/\sqrt{G^3\rho}} \propto \rho^{3/2} L^3$$

$$\alpha_{\text{vir}} = \frac{5\sigma^2 L}{2GM} = \frac{5}{6\pi} \left(\frac{\mathcal{M}}{n_J}\right)^2$$

All dimensionless numbers invariant under $\rho \rightarrow x\rho$, $L \rightarrow x^{-1/2}L$, $B \rightarrow x^{1/2}B$, but $M \rightarrow x^{-1/2}M$

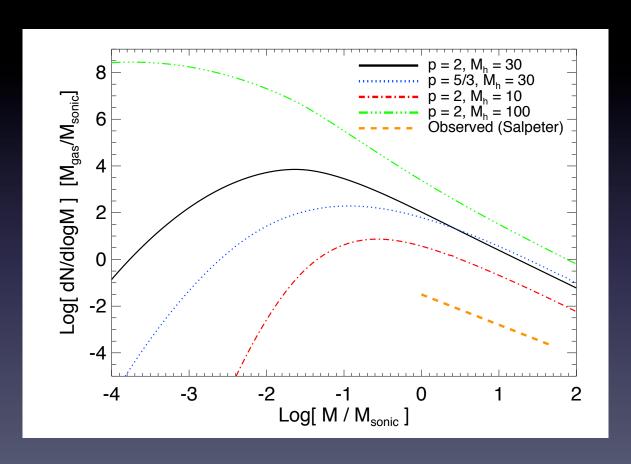
Non-isothermality required to explain IMF peak!

Option 1: Galactic Properties

- GMCs embedded in a galaxy-scale nonisothermal medium
- Set IMF peak from Jeans mass at mean density (e.g. Padoan & Nordlund 2002, Narayanan & Dave 2012a,b)
- ... or from linewidth-size relation

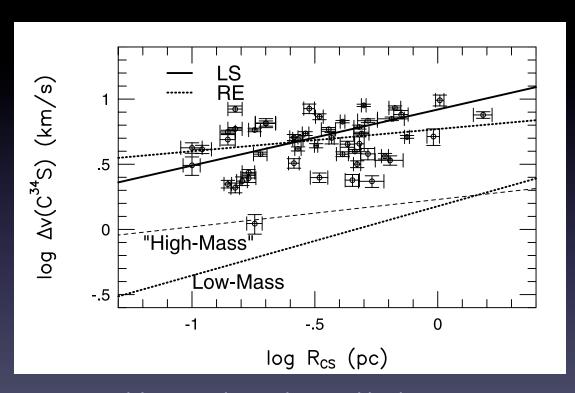
$$\sigma = c_s (\ell / \ell_s)^{1/2}$$
 (e.g. Hennebelle & Chabrier 2008, 2009; Hopkins 2012)

Example: the Sonic Mass



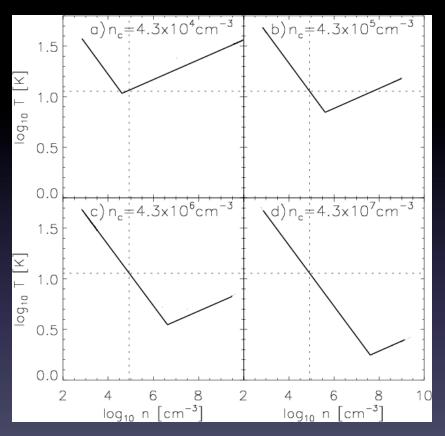
IMF derived from excursion set model (Hopkins 2012); the IMF peak is proportional to the sonic mass, $M_{sonic} \approx c_s^2 \ell_s / G$

Problem: LWS Non-Universal

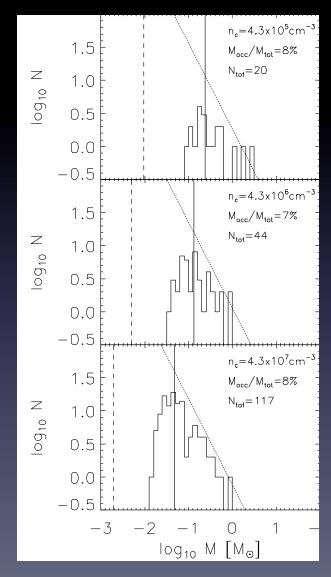


Linewidth-size relation low and high mass starforming regions (Shirley+ 2003) ...so why is doesn't the IMF vary wildly from region to region in the MW and the Magellanic Clouds?

Option 2: Local Non-Isothermality

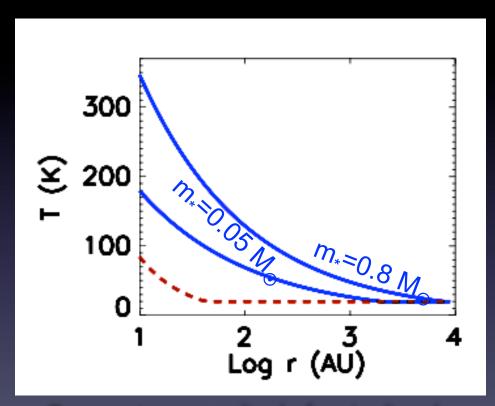


Above: EOS's used in simulations by Jappsen+ (2005); also see Larson (2005) Left: fragment mass distributions for different EOS's



What Breaks Isothermality?

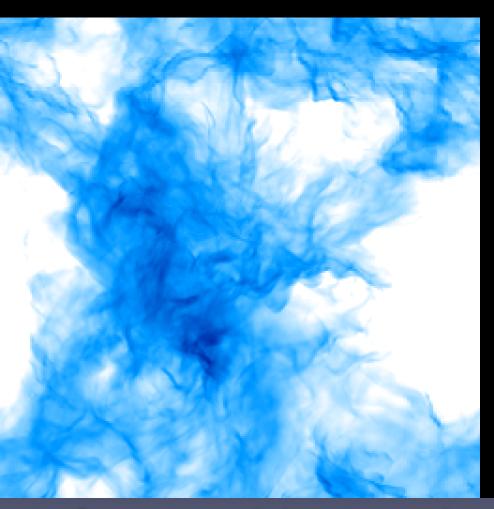
- Dust-gas coupling strong for n >~
 10⁴ cm⁻³
- Accreting stars very bright (L ~ 100 L $_{\odot}$ for M = M $_{\odot}$) \rightarrow easy to heat dust



Temperature vs. radius before (red) and after (blue) star formation begins in a 50 M_☉, 1 g cm⁻² core (Krumholz 2006)

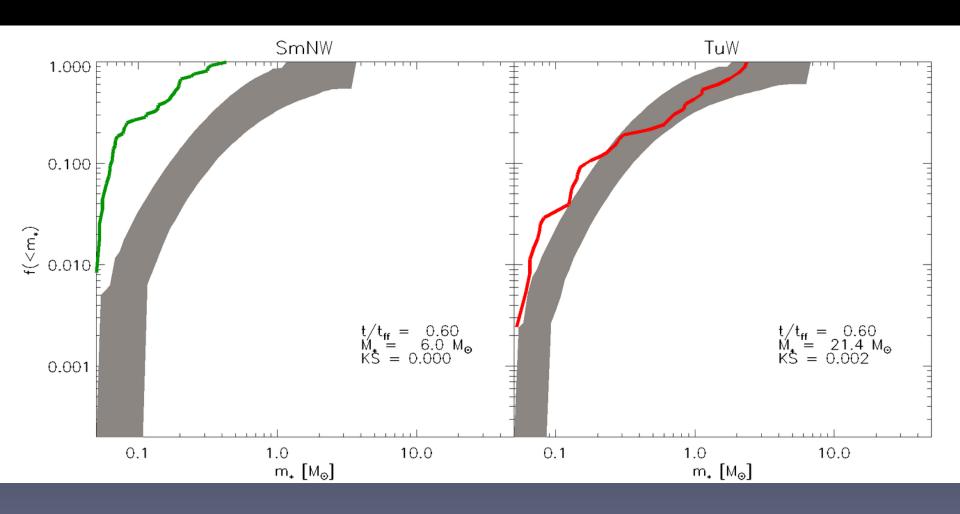
Radiation-Hydro Simulation

(Krumholz+ 2012; also see Bate 2012)

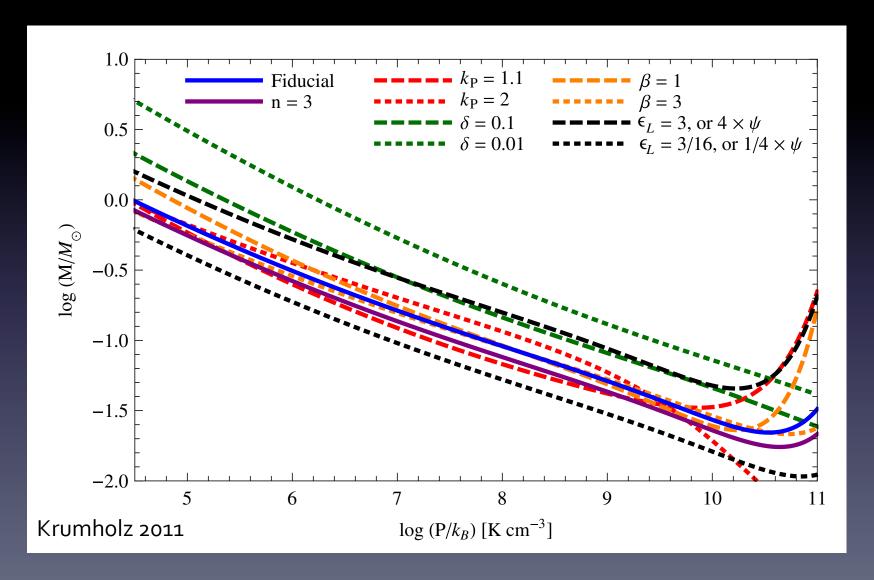


Left: projected density; right: projected temperature; simulation also includes protostellar outflows

IMF from RHD Fragmentation



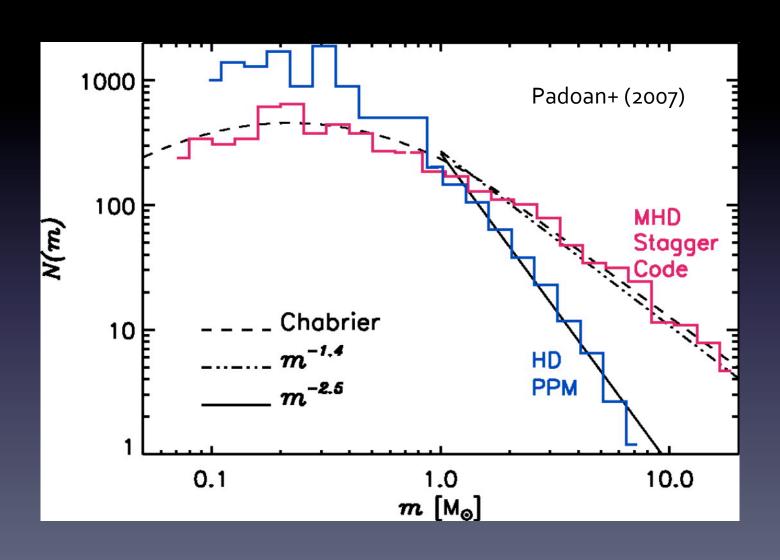
What Does Peak Depend On?



The Tail: Turbulence

- At masses above the peak, IMF is a powerlaw of fixed slope
- A powerlaw is scale-free, so isothermal approach is probably ok
- Universality of slope suggests a universal origin, likely in the physics of turbulence

Numerical Results



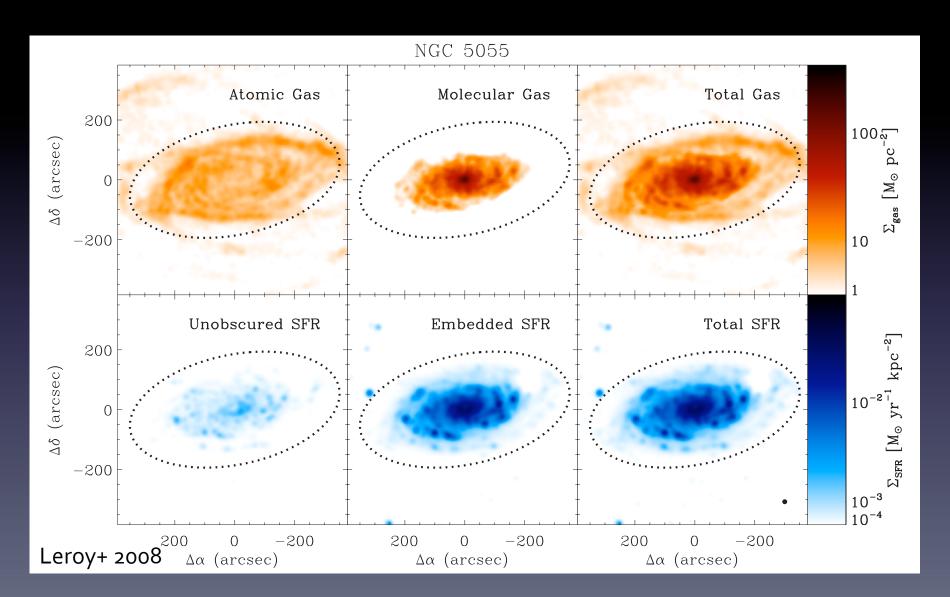
Analytic Results

- Analytic derivations: twiddle arguments (Padoan & Nordlund 2002, 2007), PS-like model (Hennebelle & Chabrier 2008a,b), excursion set model (Hopkins 2012)
- Basic idea: turbulent power spectrum $P(k) \rightarrow$ scale-dependent density variance $\sigma(M) \rightarrow$ mass spectrum of bound objects
- $P(k) \sim k^{-(1.7-2)} \rightarrow dN/dM \sim M^{-2.3}$
- Caveat: all models assume ρ, v uncorrelated, which is clearly not true

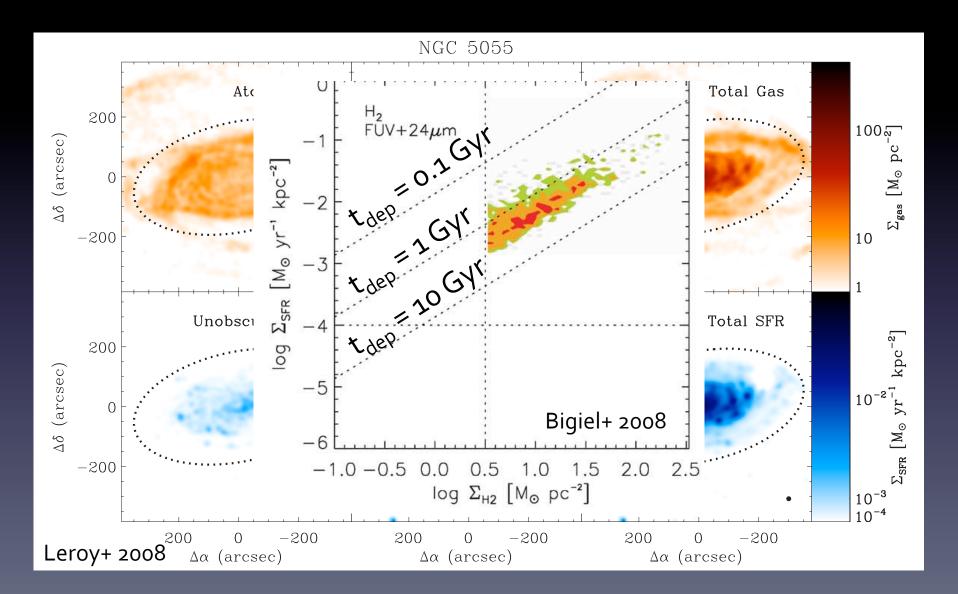
The Star Formation Rate

- As long as t_{SF} << t_H, SFR (mostly) set by gas inflows / outflows
- However, t_{SF} >~ t_H for most galaxies in the early universe, and in sub-L_{*} galaxies today
- Even when, , t_{SF} << t_H SFR determines gas content of galaxies, important for galactic structure

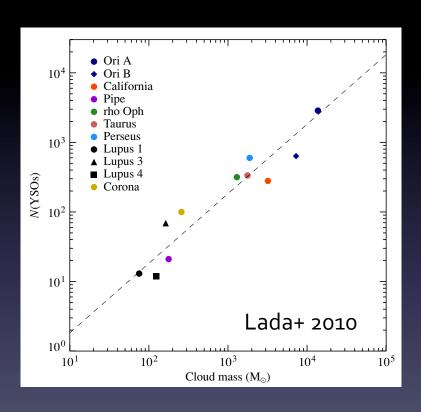
SF Laws on Galactic Scales

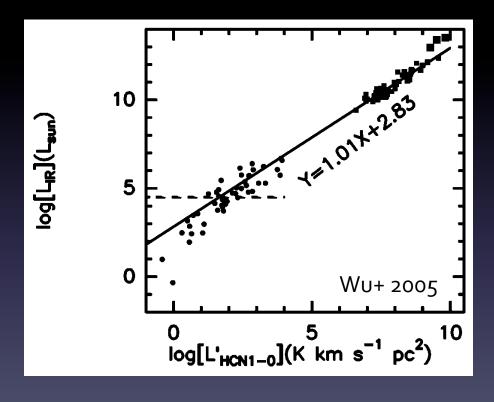


SF Laws on Galactic Scales

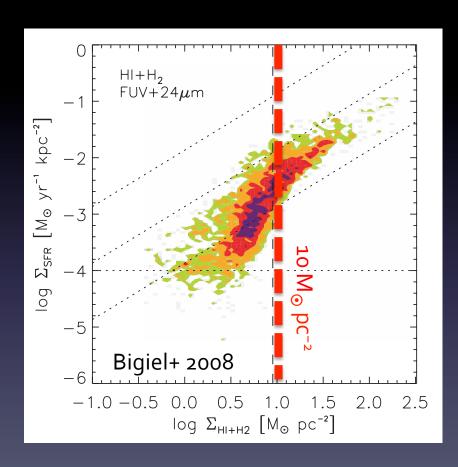


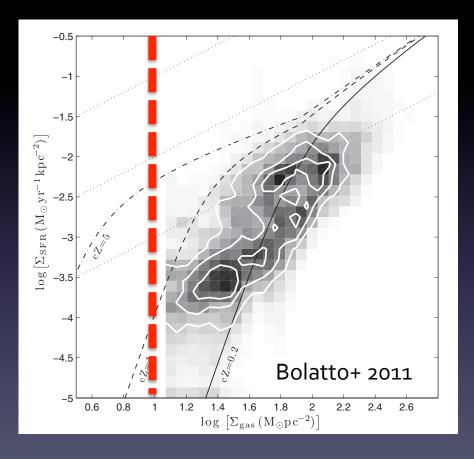
SF Laws on Sub-Galactic Scales



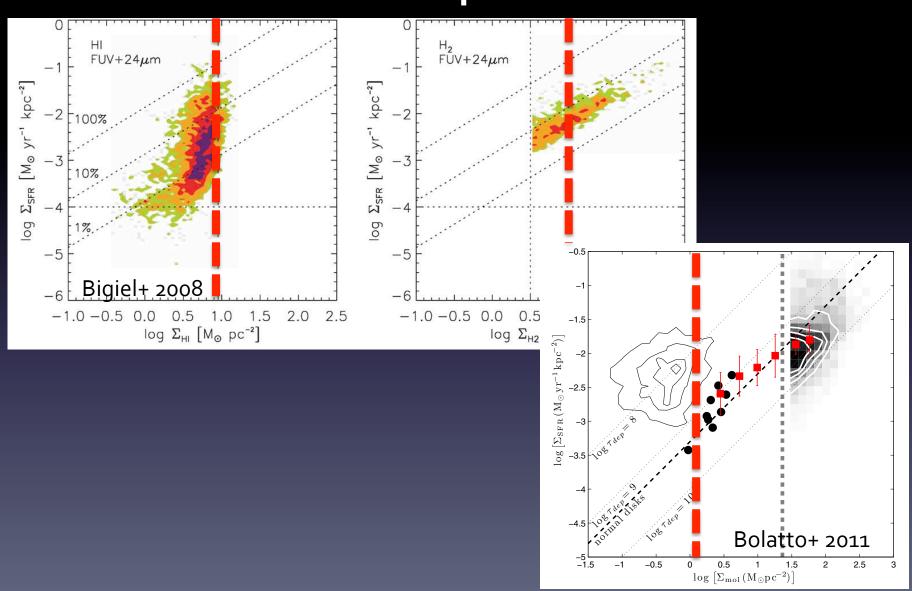


Metallicity-Dependence





Phase-Dependence



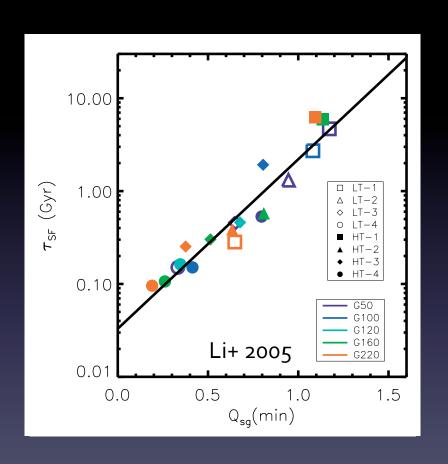
The Theoretical Challenge

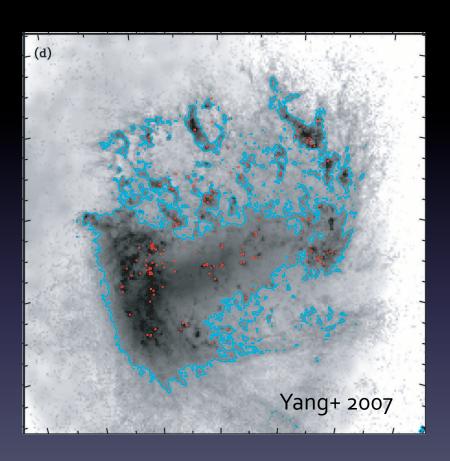
- Which laws are the fundamental ones, the local or the galactic-scale? Both? Neither?
- Can we unify the different sets of laws (at different scales, for different phases, for different lines) within a single theoretical framework?

SF Laws: the Top-Down Approach

The idea in a nutshell: the SFR is set by *galactic-scale* regulation, independent of the local SF law. The local law is to be explained separately.

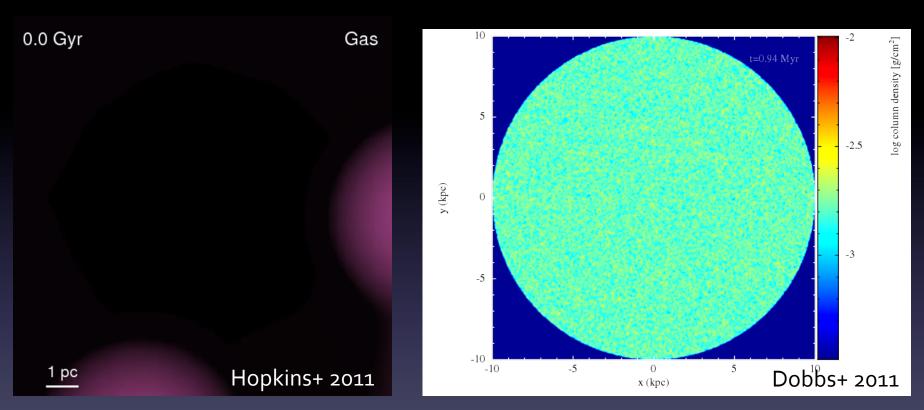
Q-Based Models





Basic idea: SFR is a function of Toomre Q in galaxy

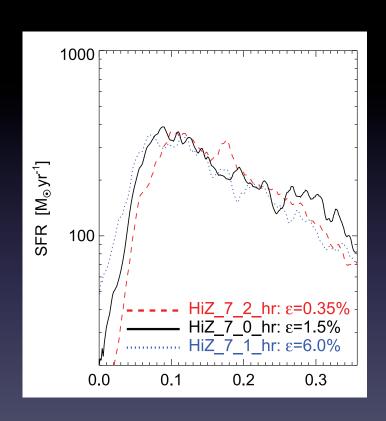
Feedback Models

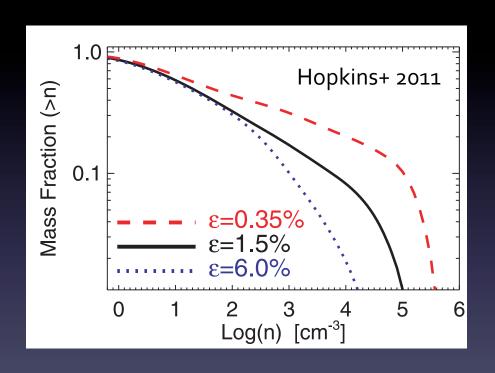


Also see Ostriker+ (2010), Tasker (2011)

Mechanisms that regulate SF rate: supernovae, radiation pressure, ionized gas pressure, FUV heating

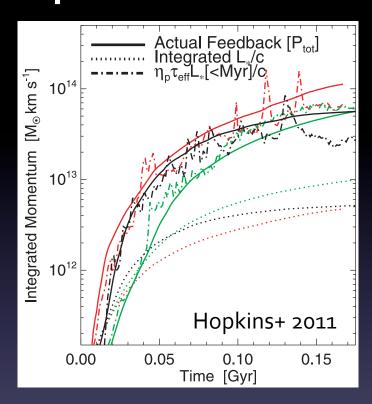
Characteristics of Top-Down Models





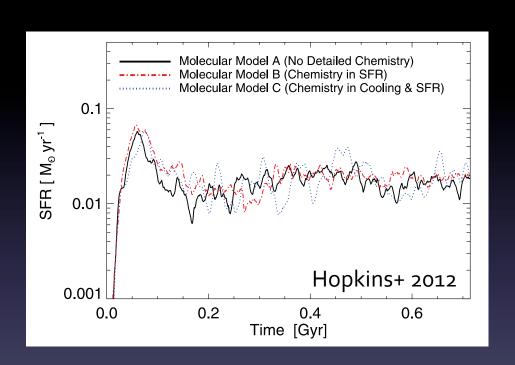
Changing the small-scale SF law does not change the SFR in the galaxy, but it does change the gas density distribution

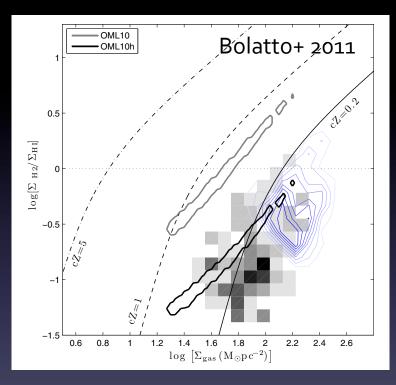
Top-Down Model Limitations



- Results depend strongly on subgrid feedback model (e.g. radiative trapping, SFE inside unresolved GMCs, UV heating per unit)
- No independent prediction for local SF laws

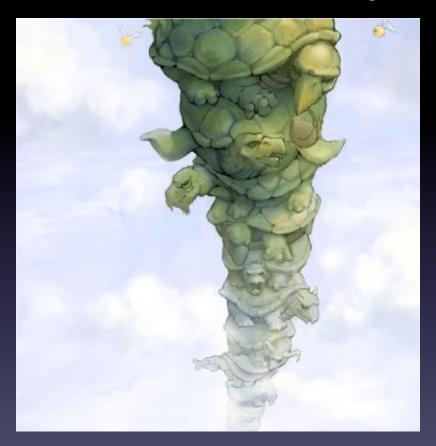
Metallicity in Top-Down Models





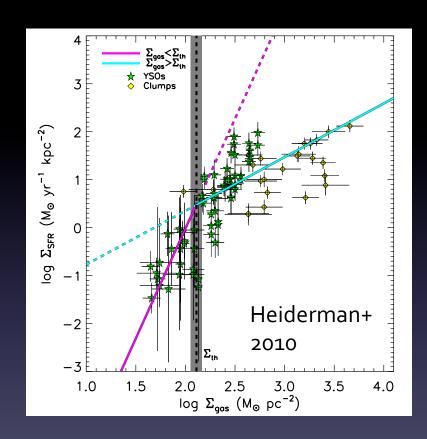
Top-down models most naturally predict SF laws that do not depend on metallicity or phase, strongly inconsistent with observations

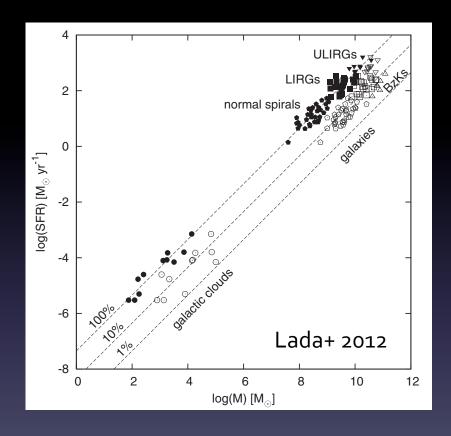
SF Laws: the Bottom-Up Approach



The idea in a nutshell: the SFR is set by a *local* SF law, plus a galactic-scale distribution of gas.

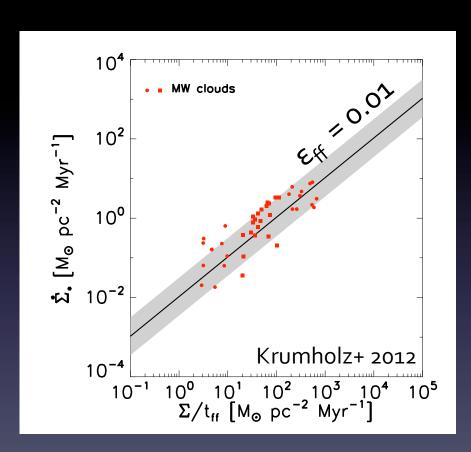
The "Dense Gas" Model

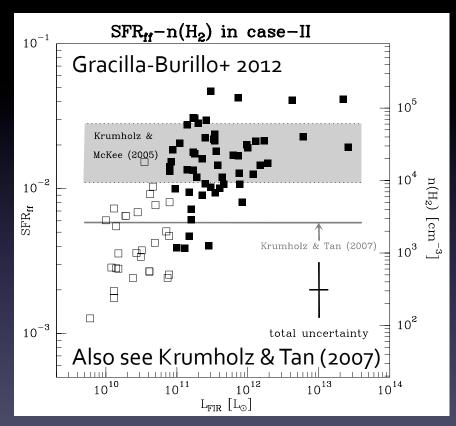




Basic idea: SFR = $M(>\rho_{dense})$ / t_{dense} , with ρ_{dense} , t_{dense} = const Problems: no physical basis for values of ρ_{dense} , t_{dense} ; evidence for threshold mixed

Observed Local SF Law



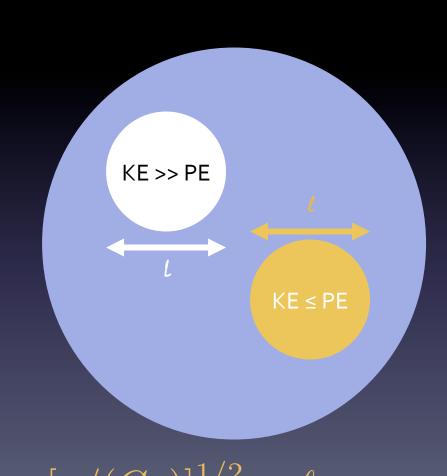


Local SF law: ~1% of gas mass goes into stars per free-fall time, independent of density or presence of massive stars

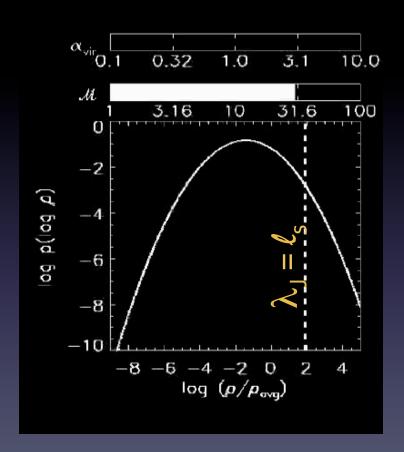
Why is $\varepsilon_{\rm ff}$ Low?

(Original model: Krumholz & McKee 2005; updates by Padoan & Nordlund 2011, Hopkins 2012, Federrath & Klessen 2012)

- Properties of GMC turbulence: $\alpha_{vir} \sim 1$, density PDF lognormal, LWS relation $\sigma_v = c_s (\ell/\ell_s)^{1/2}$
- Scaling: M ~ l³, PE ~ l⁵, KE ~ l⁴, so PE << KE, typical region unbound
- Only over-dense regions bound; required overdensity given by $\lambda_J = c_s [\pi/(G\rho)]^{1/2} < \ell_s$



Calculating $\varepsilon_{\rm ff}$



- Density PDF in turbulent clouds is lognormal; width set by M
- Integrate over region where $\lambda_J \leq \ell_s$, to get mass in "cores", then divide by $t_{\rm ff}$ to get SFR
- Result: $\epsilon_{\rm ff}$ ~ few% for any turbulent, virialized object

Building a Galactic SF Law from a Local One

- Need to estimate characteristic density
- In MW-like galaxies, GMCs have Σ_{GMC} ~ 100 M_{\odot} pc⁻², M_{GMC} ~ σ^4 / G^2 Σ_{gal} ; this gives

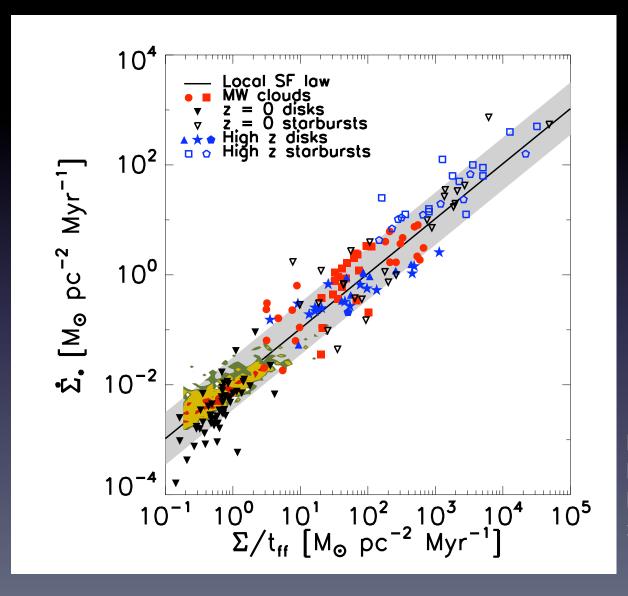
$$\rho_{\rm GMC} \sim G(\Sigma_{\rm GMC}^3 \Sigma_{\rm gal})^{1/4} / \sigma^2$$

• In SB / high-z galaxies, Toomre stability gives

$$ho_{
m T} \sim \Omega^2/GQ^2$$

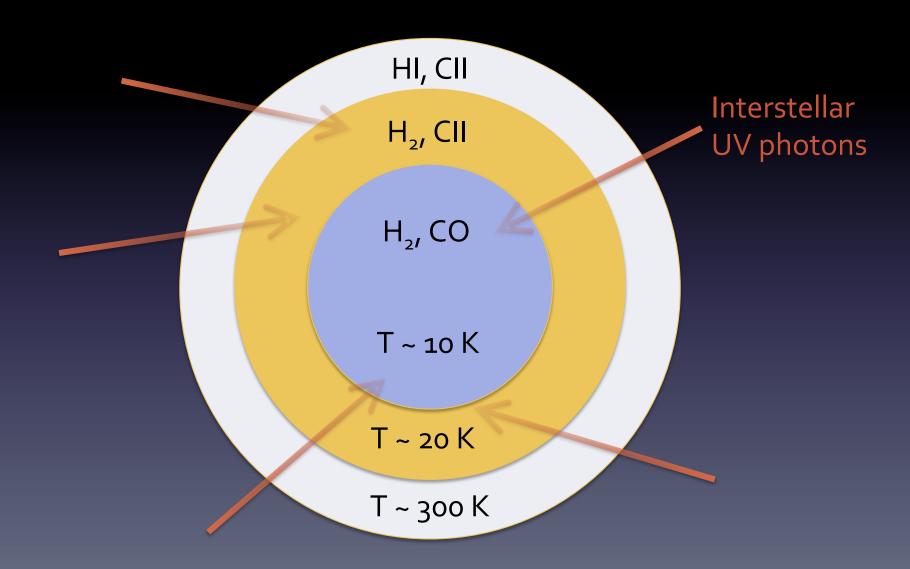
• Ansatz: $\rho = max(\rho_T, \rho_{GMC})$

Combined Local-Galactic Law



Krumholz, Dekel, & McKee 2012

Metallicity / Phase-Dependence



Chemical and Thermal Balance

H₂ formation
$$n_{\rm HI}n\mathcal{R}=n_{\rm H_2}\int d\Omega\int d\nu\,\sigma_{\rm H_2}f_{\rm diss}I_{\nu}/(h\nu)$$
 $\hat{e}\cdot\nabla I_{\nu}=-(n_{\rm H_2}\sigma_{\rm H_2}+n\sigma_{\rm d})I_{\nu}$ Absorption by dust, H₂

Line cooling
$$n^2\Lambda=n\int d\Omega\int d^2 P$$
hotoelectric heating $d
u\,\sigma_d E_{
m PE}I_
u/(h
u)$

$$\hat{e}\cdot
abla I_{
u} = -n\sigma_d I_{
u}$$
 Decrease in Absorption by rad. intensity dust

Caveat: this is assumes equilibrium, which may not hold

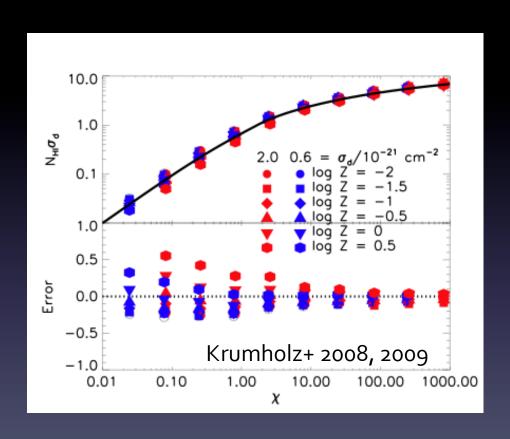
Calculating Molecular Fractions

To good approximation, solution only depends on two numbers:

$$\tau_{\rm R} = n\sigma_{\rm d}R$$

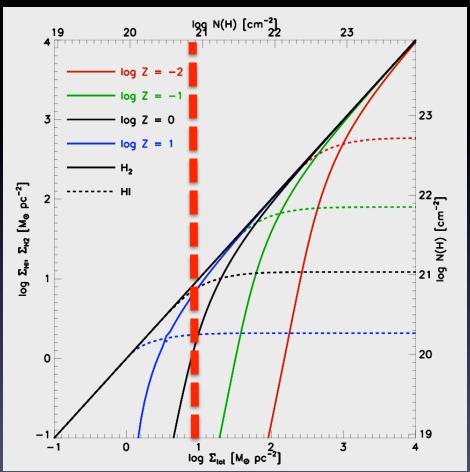
$$\chi = \frac{f_{\rm diss}\sigma_{\rm d}E_0^*}{n\mathcal{R}}$$

An approximate analytic solution can be given from these parameters.



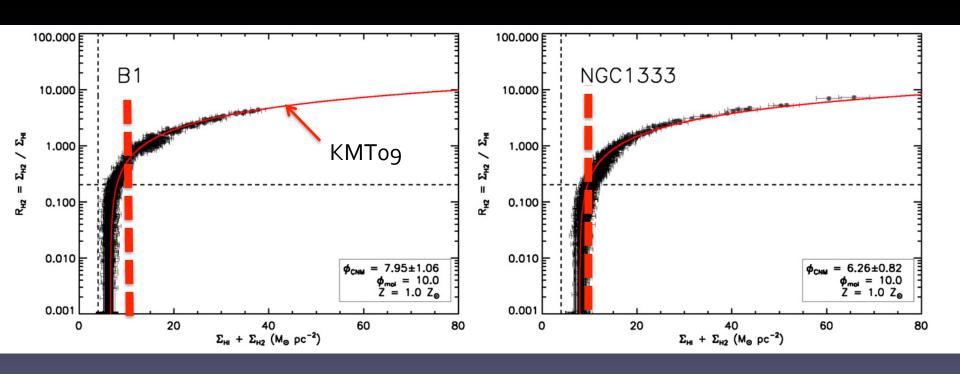
Analytic solution for location of HI / H₂ transition vs. exact numerical result

Calculating f_{H2}

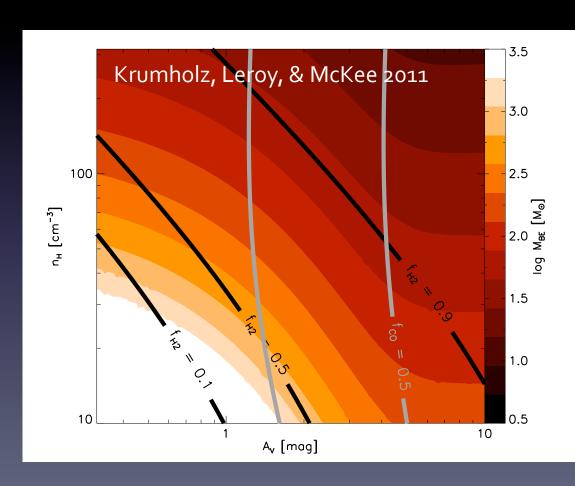


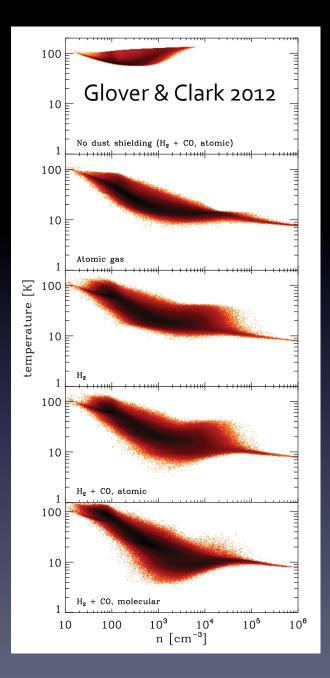
Qualitative effect: f_{H_2} goes from ~0 to ~1 when ΣZ ~ 10 M_{\odot} pc⁻²

The Local HI – H2 Transition

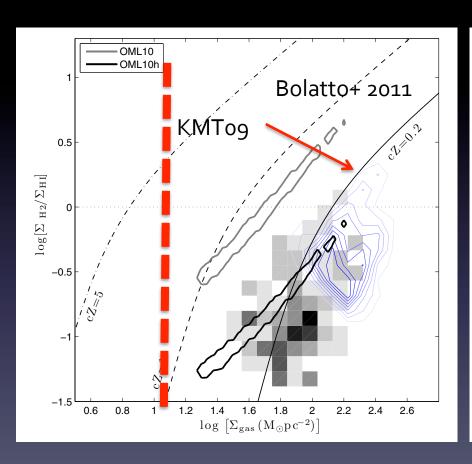


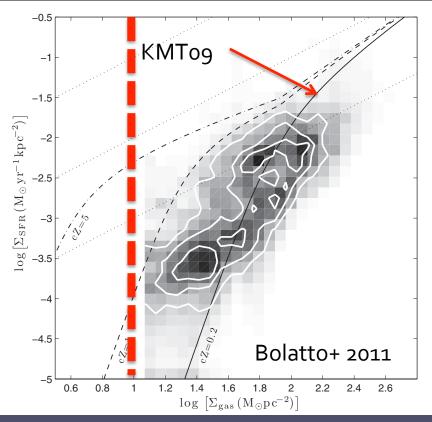
Why SF Follows H₂





Extra-Galactic Phase Dependence

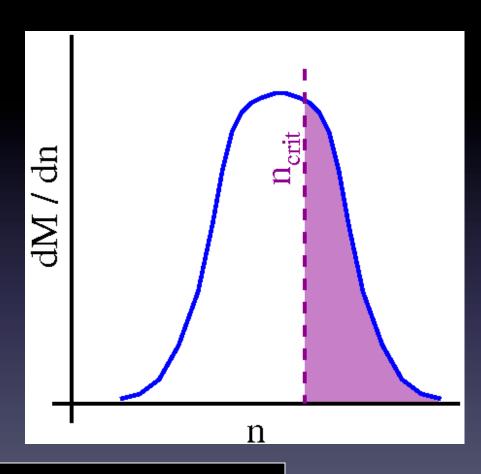




SF Laws in Other Lines

(Krumholz & Thompson 2007; see also Narayanan+ 2008)

- Line luminosity depends on mass above n_{crit}
- Low n_{crit} (e.g. CO 1-0) \Rightarrow $L_{line} \propto n^{1}$
- High n_{crit} (e.g. HCN 1-0) \Rightarrow L_{line} $\propto n^p$, p > 1



SFR
$$\propto L_{line}^{3/2}$$
 for low n_{crit}
SFR $\propto L_{line}^{q}$, q < 3/2, for high n_{crit}

Multi-Line Models

